Package: HEMDAG 2.7.4

Marco Notaro

HEMDAG: Hierarchical Ensemble Methods for Directed Acyclic Graphs

An implementation of several Hierarchical Ensemble Methods (HEMs) for Directed Acyclic Graphs (DAGs). 'HEMDAG' package: 1) reconciles flat predictions with the topology of the ontology; 2) can enhance the predictions of virtually any flat learning methods by taking into account the hierarchical relationships between ontology classes; 3) provides biologically meaningful predictions that always obey the true-path-rule, the biological and logical rule that governs the internal coherence of biomedical ontologies; 4) is specifically designed for exploiting the hierarchical relationships of DAG-structured taxonomies, such as the Human Phenotype Ontology (HPO) or the Gene Ontology (GO), but can be safely applied to tree-structured taxonomies as well (as FunCat), since trees are DAGs; 5) scales nicely both in terms of the complexity of the taxonomy and in the cardinality of the examples; 6) provides several utility functions to process and analyze graphs; 7) provides several performance metrics to evaluate HEMs algorithms. (Marco Notaro, Max Schubach, Peter N. Robinson and Giorgio Valentini (2017) <doi:10.1186/s12859-017-1854-y>).

Authors:Marco Notaro [aut, cre], Alessandro Petrini [ctb], Giorgio Valentini [aut]

HEMDAG_2.7.4.tar.gz
HEMDAG_2.7.4.zip(r-4.5)HEMDAG_2.7.4.zip(r-4.4)HEMDAG_2.7.4.zip(r-4.3)
HEMDAG_2.7.4.tgz(r-4.4-x86_64)HEMDAG_2.7.4.tgz(r-4.4-arm64)HEMDAG_2.7.4.tgz(r-4.3-x86_64)HEMDAG_2.7.4.tgz(r-4.3-arm64)
HEMDAG_2.7.4.tar.gz(r-4.5-noble)HEMDAG_2.7.4.tar.gz(r-4.4-noble)
HEMDAG_2.7.4.tgz(r-4.4-emscripten)HEMDAG_2.7.4.tgz(r-4.3-emscripten)
HEMDAG.pdf |HEMDAG.html
HEMDAG/json (API)
NEWS

# Install 'HEMDAG' in R:
install.packages('HEMDAG', repos = c('https://marconotaro.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/marconotaro/hemdag/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • L - Small real example datasets
  • S - Small real example datasets
  • W - Small real example datasets
  • g - Small real example datasets
  • test.index - Small real example datasets

On CRAN:

3.20 score 32 scripts 648 downloads 71 exports 44 dependencies

Last updated 6 days agofrom:a2e8e3d9a9. Checks:OK: 1 ERROR: 1 NOTE: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-win-x86_64NOTENov 17 2024
R-4.5-linux-x86_64ERRORNov 17 2024
R-4.4-win-x86_64NOTENov 17 2024
R-4.4-mac-x86_64NOTENov 17 2024
R-4.4-mac-aarch64NOTENov 17 2024
R-4.3-win-x86_64NOTENov 17 2024
R-4.3-mac-x86_64NOTENov 17 2024
R-4.3-mac-aarch64NOTENov 17 2024

Exports:adj.upper.triauprc.single.classauprc.single.over.classesauroc.single.classauroc.single.over.classesbuild.ancestorsbuild.ancestors.bottom.upbuild.ancestors.per.levelbuild.childrenbuild.children.bottom.upbuild.children.top.downbuild.consistent.graphbuild.descendantsbuild.descendants.bottom.upbuild.descendants.per.levelbuild.edges.from.hpo.obobuild.parentsbuild.parents.bottom.upbuild.parents.top.downbuild.parents.topological.sortingbuild.scores.matrix.from.listbuild.scores.matrix.from.tuplabuild.subgraphbuild.submatrixcheck.annotation.matrix.integritycheck.dag.integritycheck.hierarchycheck.hierarchy.single.samplecompute.flipped.graphcompute.fmaxconstraints.matrixcreate.stratified.fold.dfdistances.from.leavesF.measure.multilabelfind.best.ffind.leavesfull.annotation.matrixgpavgpav.holdoutgpav.over.examplesgpav.parallelgpav.vanillagraph.levelshtdhtd.holdouthtd.vanillalexicographical.topological.sortnormalize.maxobozinski.andobozinski.holdoutobozinski.maxobozinski.methodsobozinski.orprecision.at.all.recall.levels.single.classprecision.at.given.recall.levels.over.classesread.graphread.undirected.graphroot.nodescores.normalizationspecific.annotation.listspecific.annotation.matrixstratified.cv.data.over.classesstratified.cv.data.single.classtpr.dagtpr.dag.cvtpr.dag.holdouttransitive.closure.annotationstupla.matrixunstratified.cv.dataweighted.adjacency.matrixwrite.graph

Dependencies:assertthatBHBiocGenericsclicodetoolscolorspacedata.tabledoParallelfansifarverforeachgenericsggplot2gluegraphgridExtragtableisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrprecrecpreprocessCoreR6RBGLRColorBrewerRcpprlangscalestibbleutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
HEMDAG: Hierarchical Ensemble Methods for Directed Acyclic GraphsHEMDAG-package HEMDAG
Binary upper triangular adjacency matrixadj.upper.tri
AUPRC measuresauprc auprc.single.class auprc.single.over.classes
AUROC measuresauroc auroc.single.class auroc.single.over.classes
Build ancestorsbuild.ancestors build.ancestors.bottom.up build.ancestors.per.level
Build childrenbuild.children build.children.bottom.up build.children.top.down
Build consistent graphbuild.consistent.graph
Build descendantsbuild.descendants build.descendants.bottom.up build.descendants.per.level
Parse an HPO obo filebuild.edges.from.hpo.obo
Build parentsbuild.parents build.parents.bottom.up build.parents.top.down build.parents.topological.sorting
Build score matrixbuild.scores.matrix build.scores.matrix.from.list build.scores.matrix.from.tupla
Build subgraphbuild.subgraph
Build submatrixbuild.submatrix
Annotation matrix checkercheck.annotation.matrix.integrity
DAG checkercheck.dag.integrity
Flip graphcompute.flipped.graph
Constraints matrixconstraints.matrix
DataFrame for stratified cross validationcreate.stratified.fold.df
Distances from leavesdistances.from.leaves
Small real example datasetsexample.datasets g L S test.index W
Best hierarchical F-scorefind.best.f
Leavesfind.leaves
Compute Fmaxcompute.fmax fmax
Full annotation matrixfull.annotation.matrix
Generalized Pool-Adjacent Violators (GPAV)gpav
GPAV holdoutgpav.holdout
GPAV over examplesgpav.over.examples
GPAV over examples - parallel implementationgpav.parallel
GPAV vanillagpav.vanilla
Build graph levelsgraph.levels
Hierarchical constraints checkercheck.hierarchy check.hierarchy.single.sample hierarchical.checkers
HTD-DAGhtd
HTD-DAG holdouthtd.holdout
HTD-DAG vanillahtd.vanilla
Lexicographical topological sortinglexicographical.topological.sort
multilabel F-measureF.measure.multilabel F.measure.multilabel,matrix,matrix-method multilabel.F.measure
Max normalizationnormalize.max
Obozinski heuristic methodsobozinski.and obozinski.heuristic.methods obozinski.max obozinski.or
Obozinski's heuristic methods - holdoutobozinski.holdout
Obozinski's heuristic methods callingobozinski.methods
Precision-Recall curvesprecision.at.all.recall.levels.single.class precision.at.given.recall.levels.over.classes pxr
Read a directed graph from a fileread.graph
Read an undirected graph from a fileread.undirected.graph
Root noderoot.node
Scores normalization functionscores.normalization
Specific annotations listspecific.annotation.list
Specific annotation matrixspecific.annotation.matrix
Stratified cross validationstratified.cross.validation stratified.cv.data.over.classes stratified.cv.data.single.class
TPR-DAG ensemble variantstpr.dag
TPR-DAG cross-validation experimentstpr.dag.cv
TPR-DAG holdout experimentstpr.dag.holdout
Transitive closure of annotationstransitive.closure.annotations
Tupla matrixtupla.matrix
Unstratified cross validationunstratified.cv.data
Weighted adjacency matrixweighted.adjacency.matrix
Write a directed graph on filewrite.graph